Biology: Chemistry in Biology: 17: Nucleic Acids - Medical Animation Biology: Chemistry in Biology: 17: Nucleic Acids - Medical Animation Biology: Chemistry in Biology: 17: Nucleic Acids - Medical Animation
Biology: Chemistry in Biology: 17: Nucleic Acids - Medical AnimationBack to healthguideusa.org 
Powered by the doe report



or
Search Language
Browse
Medical Illustrations
Medical Exhibits
Medical Animations
Medical Animation Titles
Medical Encyclopedia
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Cells & Tissues
Abdomen
Back and Spine
Foot and Ankle
Hand and Wrist
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Anesthesiology
Cancer
Cardiology
Dentistry
Emergency Medicine
Gastroenterology
Infectious Diseases
Neurology/Neurosurgery
Nursing Home
Ob/Gyn
Orthopedics
Pathology
Pediatrics
Personal Injury
Plastic Surgery
Psychiatry
Radiology
Surgery
Urology/Nephrology
Account
Administrator Login
 
3/28/24

Biology: Chemistry in Biology: 17: Nucleic Acids - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV16033 — Source #1149

Order by phone: (800) 338-5954

Biology: Chemistry in Biology: 17: Nucleic Acids - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: The final organic macromolecule we'll cover is nucleic acids. A nucleic acid is an organic macromolecule, which means it's a large organic compound made from thousands or hundreds of thousands of smaller molecules. There are two types of nucleic acids, deoxyribonucleic acid or DNA and ribonucleic acid or RNA. Notice that both terms actually contain the words nucleic acid in them. In living organisms, DNA is the main component of chromatin, which will condense into the familiar chromosome shape prior to cell division. The DNA in chromosomes is organized in a specific order that makes up an organism's genes. Genes contain the directions for every function, trait, and activity in a living organism. These activities include growth, reproduction, and especially, heredity, which means the ability to pass on genes to offspring. The other type of nucleic acid, RNA, is integrally involved in building specific proteins by assembling their amino acids in the correct order. Proteins are responsible for all cellular functions in living organisms. So what are nucleic acids made of? Of course, as an organic macromolecule, nucleic acids contain the element carbon. Like proteins, nucleic acids also contain hydrogen, oxygen, and nitrogen. But nucleic acids also contain the element, phosphorous. So what is the structure of nucleic acids? Well, both DNA and RNA are made up of monomers called nucleotides. All nucleotides contain three compounds. The first compound is a phosphate group which contains phosphorous. The second compound is a five-carbon sugar. All five-carbon sugars can be called a pentose. A good way to remember this is that pent means five and the suffix, -ose, means sugar. The specific pentose sugar in RNA is called ribose. The pentose sugar in DNA has one less oxygen than ribose in RNA, which leads to its name, deoxyribose. The third compound in a nucleic acid nucleotide is a weak base that always contains nitrogen. For this reason, this compound is referred to as a nitrogenous base. The nucleotides in DNA contain one of four possible nitrogenous bases. They are called adenine, thymine, cytosine, or guanine. These bases are usually abbreviated as A, T, C, and G. Similarly, the nucleotides in RNA also contain one of four nitrogenous bases, adenine, uracil, cytosine or guanine. They are abbreviated as A, U, C, and G. Notice that both DNA and RNA have adenine, cytosine, and guanine but only DNA has thymine and only RNA has your uracil. So how do nucleotide monomers assemble into nucleic acids? Well, the phosphate group in one nucleotide bonds with the pentose sugar in another nucleotide. The assembled string of nucleotide forms a nucleic acid polymer. Even though both RNA and DNA have alternating sugar and phosphate groups, there are differences in their overall structure. For example, RNA is a single-stranded nucleic acid while DNA is a double-stranded nucleic acid. The two strands in DNA are linked by a hydrogen bond that connects the nitrogenous bases from one strand to the nitrogenous bases from the other strand. In summary, nucleic acids are organic macromolecules. The two types of nucleic acids are DNA and RNA. DNA and RNA are used to transmit hereditary information and to instruct the cell how to properly construct proteins. Nucleic acids contain carbon, hydrogen, oxygen, nitrogen, and phosphorous. Nucleotides are the monomers that bond together to form DNA or RNA. Nucleotides consist of three compounds, a phosphate group, a five-carbon sugar, also known as a pentose, and a nitrogenous base. The nitrogenous bases in DNA are adenine, thymine, cytosine, and guanine. The nitrogenous bases in RNA are adenine, uracil, cytosine, and guanine. The five-carbon sugar in DNA is called deoxyribose while the five-carbon sugar in RNA is called ribose.

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Biology: Chemistry in Biology: 10: Acids and Bases
Biology: Chemistry in Biology: 10: Acids and Bases - NSV16022
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 11: pH
Biology: Chemistry in Biology: 11: pH - NSV16024
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 12: Catalysts and Enzymes
Biology: Chemistry in Biology: 12: Catalysts and Enzymes - NSV16023
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 01: Atoms
Biology: Chemistry in Biology: 01: Atoms - NSV15010
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 15: Lipids
Biology: Chemistry in Biology: 15: Lipids - NSV16036
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 13: Overview of Organic Compounds
Biology: Chemistry in Biology: 13: Overview of Organic Compounds - NSV16027
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"I would like to thank all of you at Medical Legal Art for all the assistance you provided. It was a result of the excellent, timely work that we were able to conclude the case successfully.

I feel very confident that our paths will cross again."

Fritz G. Faerber
Faerber & Anderson, P.C.
St. Louis, MO

"I wanted to take some time out to let you know what a wonderful job you did with the 'collapsed lung/fractured rib' illustrations. They were both detailed and accurate. My medical expert was comfortable working with them and he spent at least an hour explaining to the jury the anatomy of the lungs, the ribs and the injuries depicted in the illustrations. Needless to say, the jury was riveted to the doctor during his testimony.

The jury returned a verdict for $800,000.00 and I'm sure we would not have done so well if not for the visualizations we were able to put forth with your assistance. Lastly, my special thanks to Alice [Senior Medical Illustrator] who stayed late on Friday night and patiently dealt with my last minute revisions."

Daniel J. Costello
Proner & Proner
New York, NY

"This past year, your company prepared three medical illustrations for our cases; two in which we received six figure awards; one in which we received a substantial seven figure award. I believe in large part, the amounts obtained were due to the vivid illustrations of my clients' injuries and the impact on the finder of fact."

Donald W. Marcari
Marcari Russotto & Spencer, P.C.
Chesapeake, VA
"I wanted to thank you for the terrific job you did illustrating my client's injuries. The case was settled at the pre-suit mediation, and I believe a good part of the success we had was due to the medical legal art you prepared.

Your work received the ultimate compliment at the conclusion of the mediation. The hospital risk manager took the exhibit with them at the conclusion of mediation, and will be using it to train nurses on how to prevent bed sores..."

Steven G. Koeppel
Troy, Yeslow & Koeppel, P.A.
Fort Myers, FL

Medical Legal Blog |Find a Lawyer | Hospital Marketing